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LOW-FREQUENCY SOUND TRANSMISSION
IN DUCTS WITH PERMEABLE WALLSs
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A predictive model for sound propagation in tubes with permeable walls is
presented. In this, acoustic coupling between the internal and external sound "elds
is taken into account by the use of an iterative procedure that involves "nite-length
&&cells'' of uniform properties in the tube and an appropriate external radiation
model. The propagation model is veri"ed by comparison to experimental data on
a perforated metal tube and is applied to a practical type of permeable fabric tube.
Good agreement between prediction and experiment is noted in the former case
with predicted wall impedance values, and in the second case with &&best "t''
empirically derived wall impedance "gures.

( 1999 Academic Press
1. INTRODUCTION

Tubes with permeable walls are used in various applications, one of which is in the
intake systems of internal combustion (IC) engines, where the tube is placed
upstream of the air "lter. A typical such tube might be made from wire-reinforced
woven fabric. An understanding of sound propagation in permeable tubes is clearly
desirable in the development of predictive design software for engine intake
systems. The porous nature of the tube walls renders the internal wall impedance
complex, so that an internally propagated sound "eld will be axially attenuated.
But it can also introduce signi"cant acoustic coupling between the interior and the
exterior of the duct, and this feature distinguishes permeable-walled ducts from
other types of soft-walled duct, in which internal/external acoustic coupling is
usually minimal. For example, unlined ducts with impermeable but #exible walls
radiate internal noise to the exterior via internally excited wall vibration (see, for
example, the papers of Kuhn and Morfey [1] and Cummings [2]), but this tends to
occur principally in narrow frequency bands around structural resonances of the
walls. In unlined sheet metal ducts, coupling between wall vibration and the
external sound "eld is usually weak and may be neglected (see the paper by Astley
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and Cummings [3]). In acoustically lined sheet metal ducts, the walls are usually
su$ciently massive to inhibit internal/external sound transmission, though
Cummings and Astley [4] have shown that this can be signi"cant in the case of
rectangular ducts with lightweight walls, where coupling between wall vibration
and the internal sound "eld also needs to be taken into account.

In the present paper, a model for sound propagation in ducts with permeable but
rigid walls is described. This is valid over the &&low'' frequency range in which the
fundamental acoustic mode propagates with much lower attenuation than the
higher order modes. The model incorporates the e!ects of both the duct-wall
impedance and the external sound "eld, which is coupled*via acoustic motion
through the wall*to the internal sound "eld. Mean air-#ow e!ects are ignored,
"rst because the mean #ow Mach number in the tube would normally be small (at
least in the context of IC engine intake systems), and secondly because any steady
air #ow through the tube walls would be so slow as to have little e!ect on the wall
impedance. Numerical predictions of the axial sound pressure level distributions
are compared to experimental data for both a perforated metal tube*used to verify
the model*and a practical type of fabric tube, representative of those used in
engine exhaust systems. The computed sound power #ow components in the fabric
tube are also discussed.

2. THEORY

The system depicted in Figure 1 will be considered here. A simple harmonic
sound source of radian frequency u radiates into the right-hand end of
a circular-section permeable-walled tube of length ¸, located in an acoustic free
"eld. This source could take the form of a plane-wave sound "eld incident from
a rigid-walled pipe, or some other source type as long as the sound "eld that it
generates consists principally of the fundamental mode of propagation. At the
left-hand end of the permeable tube is a rigid-walled tube of the same internal
diameter, in which only plane waves can propagate. This rigid tube is speci"ed in
terms of a plane-wave re#ection coe$cient at x"0. Incident and re#ected waves
(denoted &&i '' and &&r'' respectively) are shown in Figure 1. It will be assumed that
only the fundamental acoustic mode propagates at all points within the permeable
pipe section. This assumption should be valid at su$ciently low frequencies,
provided the axial attenuation rates of higher order modes are substantially higher
than that of the fundamental mode. Because the permeable tube is of "nite length,
the external radiation load will not be constant along the length of the tube and,
correspondingly, neither will the internal pipe wall impedance. This complicates the
issue of modelling the internal sound "eld, and a straightforward uniform
wall-impedance model for the whole tube cannot be used. Accordingly, a further
assumption (see section 2.1) is that, although the internal pipe wall
impedance*including the e!ects of the non-uniform external radiation load*may
vary continuously along the axis of the pipe, a propagation model involving
a piecewise uniform wall impedance is valid. This should be the case, provided
appropriate matching conditions between the sound "elds in the uniform-
impedance sections are implemented, and that the length of each of these sections is



Figure 1. A permeable tube in an acoustic free "eld.
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su$ciently small. Various authors have successfully used such &&piecewise uniform''
or &&stepped''models in several contexts in duct acoustics (see for example the paper
by Alfredson [5], concerning ducts of axially varying cross-sectional area).

2.1. THE ITERATIVE SOLUTION METHOD

Because a piecewise uniform wall impedance model is adopted here, it is
convenient to divide the permeable tube axially into N &&cells'', all of equal length
2x

0
, numbered by the index i. The external sound pressure will be assumed here to

be approximately constant over the length of each cell. And, if the duct walls are
assumed to be locally reacting and permeable but rigid with a constant impedance
(1

w
"Dp/uav

n
oc, Dp being the acoustic pressure di!erence across the walls and uav

n
the average of the outer and inner outward normal particle velocity components),
the analysis is simpli"ed because the axial wavenumber and transverse mode
function will be constant along the length of each cell. Continuity of acoustic force
(i.e., sound pressure integrated over the cross-sectional area) and volume velocity
for the fundamental mode, over the interfaces between cells, gives matching
conditions which are employed in an iterative solution procedure that may be
summarized as follows: (i) the incident and re#ected wave amplitudes at x"0 in the
permeable tube are speci"ed according to the re#ection coe$cient and the
left-travelling plane wave amplitude in the rigid tube; (ii) the external sound
pressures surrounding all cells are put equal to zero; (iii) the axial wavenumbers in
the cells are found from the wall impedances and the external sound pressures, and
incident and re#ected sound pressure amplitudes are found for all cells, using the
force and volume matching conditions between cells; (iv) the normal acoustic
velocity through the pipe wall is found in each cell from the internal sound "eld
from (iii) and the wall impedance; (v) the external sound pressure surrounding each
cell is found from the mutual radiation impedances of the cells (see later).

The process from step (iii) to step (v) is repeated until convergence occurs. There
may be an apparent contradiction in steps (ii)}(v) above at the "rst iteration, in that
the assumed zero radiation load in step (ii) is incompatible with the idea of a normal
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particle velocity through the pipe wall (step (iv)) and an associated external sound
pressure "eld (step (v)). This is resolved when one notes that it is at step (iii) where
the internal sound "eld is re-calculated by the use of the external sound "eld from
the previous step. Not until the process has converged is the solution representative
of reality.

2.2. THE INTERNAL SOUND FIELD

Within each cell, the sound pressures in the incident and re#ected waves may be
written as
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where P represents sound pressure amplitude, k
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are axial and radial

wavenumbers for the fundamental mode, the radial factor in the sound "elds is
J
0
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r
r) and J

m
( ) is a Bessel function. Two adjacent cells are depicted in Figure 2.

For convenience, they are labelled 1 and 2, and the conditions of acoustic force and
volume velocity at section b lead to the relationships
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between the incident and re#ected sound pressure amplitudes in cell 2 at section
b and those in cell 1 at section a.

The axial wavenumber k
x

in each cell was found by solving the eigenequation
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Figure 2. Two adjacent cells.
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in which 1
i
is the internal wall impedance, 1

i
"p

i
/u

ni
oc, o is the #uid density,

k"u/c, c is the sound speed and p
i
, u

ni
are (respectively) the internal sound

pressure at the tube wall halfway along the cell (say) and the corresponding
outward normal particle velocity. (It is convenient to use the halfway point as the
datum position, not for de"ning the impedance*where the axial position in the cell
is immaterial*but in calculating the external sound pressure "eld, where the
internal sound pressure at this position would be approximately representative of
the average value in the cell.) Equation (3) was solved numerically by the use of
Muller's method, and the starting value of k

x
in this iterative process was found by

inserting small argument approximations for J
0
( ) and J

1
( ) in equation (2) to yield

(for the fundamental mode)
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2.3. COUPLING BETWEEN INTERNAL AND EXTERNAL SOUND FIELDS

The internal wall impedance may be related to 1
w

and the external sound
pressure as follows. The outward normal particle velocities on the external and
internal tube wall surfaces of (for example) cell 1 are denoted by u(1)

ne
, u(1)
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and the

corresponding pressures by p(1)
e
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, all quantities again being de"ned at the axial
centre of the cell. Then 1 (1)
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from continuity of volume velocity,
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Equation (5b) is also required in matching the internal and external sound "elds via
the wall impedance. Equivalent expressions hold, for course, for all cells.

2.3.1. ¹he internal sound ,eld

Equations (2a, b) may be used to relate P
i
and P

r
in cell 1 at x"0

`
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are the radial and axial wavenumbers in cell 1.
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In the experiments that are described later in this paper, a rigid plate was used to
terminate the tube at x"0 instead of the aforementioned anechoically terminated
rigid-walled tube extension, because of the relative ease of fabrication. This
corresponds to R"1 in equations (6a, b), which yield P

r0`
"P

i0`
. This was used

as the boundary condition at x"0, and P
r0`

was arbitrarily put equal to 1#i0
pressure units.

2.3.2. ¹he external sound ,eld

The experiments involved a permeable tube with no axial extensions at either
end, which may be approximated by a "nite-length vibrating circular cylinder with
rigid ends, for the purposes of computing the external sound "eld. In step (v) of the
iteration procedure described in section 2.1, the mutual radiation impedance
between two uniformly pulsating annular bands on the outer surface of the tube is
required. Greenspon and Sherman [6] give theoretical results for uniformly
pulsating curvilinear rectangular areas or &&pistons'' in an in"nite rigid cylindrical
ba%e, but Cummings et al. [7] have shown numerically that the addition of rigid
semi-in"nite cylindrical ba%es to the ends of a "nite-length radiating cylinder make
little di!erence to the radiation pattern. Accordingly, the results of reference [6] will
be employed here. The e!ects of the "nite impedance of the walls of the permeable
tube will*perforce*be neglected in the present investigation. This should be
a reasonable approximation provided the acoustic wavelength is signi"cantly
greater than the outer radius of the tube. For two pistons in a cylindrical ba%e, the
mutual radiation impedance is de"ned [6] as
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being the velocity of the ith piston (u

ne
in the above nomenclature), p

i
the sound

pressure produced at the jth piston by the ith piston and s
j
the area of the jth piston.

If the cylinder radius is a, the axial dimensions of both pistons are 2x
0
, the axial

separation of the pistons is x
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and the pistons are fully annular, the result of
reference [6] may be written
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K
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( ) is a modi"ed Bessel function and Y

m
( ) is a Neumann function. The results of

reference [6] have been corrected by a factor of 1/k2 and suitably modi"ed for the
&&#i '' notation used here. The sound pressure from the ith piston, space-averaged
over s

j
, is equal to Sp
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Of course, since all the pistons have the same area in the present problem, Z
ij
"Z

ji
(see equations (8, 9)), subject to the assumption of an in"nite-impedance wall on the
cylindrical ba%e. And, furthermore, Z

ij
only has to be computed N, rather than N2,

times since it is only the axial separation of the pistons that determines the mutual
radiation impedance (for example, the mutual radiation impedance of the 5th and
12th pistons is the same as that of the 8th and 15th). The integrations in equation (9)
were accomplished by the use of 12-point Gaussian quadrature, over an
appropriate number of sub-intervals.

2.3.3. ¹he uncoupled solution

For comparison purposes, the sound "eld inside the porous tube was found both
with internal/external acoustic coupling (as outlined above) and without it. The
uncoupled solution was found by putting p

e
"0 for all cells. Of course, no iteration

was required beyond step (iii) in the process described in section 2.1, and the sound
"eld in the duct was equivalent to that in a duct of constant wall impedance equal
to 1

i
"1

w
(1#a

1
/a

2
)/2.

2.4. THE NET SOUND POWER LOSS IN THE POROUS TUBE

In the system considered, a portion (=
t
) of the sound power=

i
incident on the

porous tube passes through the tube into the non-re#ecting termination, a portion
=

r
is re#ected back toward the source at the source end of the tube, and the balance

(=
inc

) is incident on the inner walls of the tube. Of this incident sound power, only
a proportion=

rad
is radiated to the exterior because of the dissipation in the walls

of the tube. A control surface within the tube is depicted in Figure 3 and the
components of the sound power #ow are shown. These components may be
expressed in terms of the "eld variables embodied in the solution scheme as follows:
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Figure 3. Sound power #ow in the permeable tube.
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where the superscript ¸ in equations (12a, b) denotes quantities in the Nth cell at
x"¸ and =

rad
has been found by summing the radiated sound power

contributions from all cells. Equation (12e) simply represents the acoustic power
balance*at a steady state*in the control volume. The integration in equations
(12a, b) were performed numerically by the use of 12-point Gaussian quadrature.
In the tube walls, provided the wall impedance has a resistive component, there will
be a net power dissipation

=
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which can be represented in decibel form in some convenient way. Here, we choose
to de"ne a &&net sound power loss'' D= as the logarithmic ratio between=

i
and the

remainder of this quantity, once the dissipated power has been subtracted.
Therefore,

D="10 log A
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Clearly, for no dissipation, D="0 whereas for =
diss

P=
i
, D=PR.

3. EXPERIMENTS AND COMPARISON WITH THEORY

The apparatus shown in Figure 4 was used to measure the axial amplitude and
phase distribution in a permeable tube, situated in a semi-anechoic environment.
The transfer function between the microphone output and the loudspeaker input
was measured at selected frequencies, and its modulus and phase were plotted versus



Figure 4. The experimental apparatus.
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the axial distance from the rigid termination. Two tubes were used in the tests. The
"rst was a circular aluminium tube with a

1
"28)5 mm, a

2
"31)55 mm and

¸"862 mm (the e!ective length), perforated with 0)98 mm diameter holes to give
an open area of 1)181%, and this was used to verify the theoretical model. The
second was a #exible woven fabric tube (reinforced by a wire spiral) with circular
section, of the type employed in IC engine inlet systems, and this was used as
a practical example. It had a

1
"27)5 mm, a

2
"30)5 mm and ¸"776 mm.

The theoretical results of Ingas rd and Ising [8], and of Hersh and Rogers [9],
were used to predict the impedance of the holes in the aluminium tube*including
both the viscous resistance and the reactance*and this impedance was divided by
the fractional open area to give 1

w
. The hole resistance expression of reference [8] is

more appropriate to the present problem*where the ori"ce length is signi"cantly
greater than the diameter*than that of reference [9], and is given (in oc units) by

h
h
"J8ul(1#t/d)/c, (15a)

where l is the #uid kinematic viscosity and t, d are the length and diameter of the
perforate holes. The hole reactance expression of Hersh and Rogers [9] was used
here in preference to that of reference [8] because it is felt to be more appropriate to
the (actual) case in which an unsteady viscothermal boundary layer exists on the
tube wall surrounding the ori"ce. This expression is (in oc units)

s
h
"k(t#d)#Jul/2/c (15b)

and the total ori"ce impedance is given by 1
h
"h

h
#is

h
.

In the case of the fabric tube, di$culty was experienced in obtaining reproducible
wall impedance data. Various types of test were carried out on #at samples of the
wall material, and in all cases there was strong evidence of structural motion of the
sample, which appeared to behave like a porous plate (also being orthotropic in its
elastic properties because of the wire reinforcement). This, of course, meant that the
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measured impedance represented not only permeability e!ects, but also structural
e!ects dependent on the size, shape and boundary conditions of the sample. The
steady #ow resistance of the material was very high, and it is thought that this was
partly responsible for the pronounced structural component of the impedance.
Attempts were also made to measure the impedance of a cylindrical sample placed
centrally in a cylindrical cavity, by the use of a two-microphone method. This too
proved largely unsuccessful, mainly because of the di$culty in sealing the edges of
the sample. The problems encountered in these measurements raise the question of
whether structural motion is likely to be an important factor in the fabric tubes.
This is an unresolved question, partly because of the complex nature of the
tube-wall structure. It is thought, however, that structural motion would be much
smaller in the case of a circular tube of the reinforced fabric material subjected to
a circumferentially uniform forcing pressure than with a #at plate of the same
material, subjected to a forcing pressure that was uniform in its plane. It is therefore
tentatively suggested that wall motion is negligible in the case of the fabric tubes,
except possible in cases where the #ow resistance of the wall is extremely high.

Because of the di$culties in measuring the impedance of the reinforced fabric
wall material, &&best "t'' e!ective impedance values have been used here in numerical
predictions for the fabric tubes, obtained from comparisons to measured data. The
accuracy of these is limited by the resolution of the data "tting, and the "gures are
taken to the nearest 0)5oc units. Attempts to predict the wall impedance in a simple
way from the steady #ow resistance and mass per unit of the wall material in
parallel proved to yield inaccurate results, and were abandoned.

3.1. MEASURED AND COMPUTED SOUND PRESSURE LEVEL DISTRIBUTION
FOR THE ALUMINIUM AND FABRIC TUBES WITH RIGID TERMINATIONS

The measured and predicted axial sound pressure level (¸
p
) variations for the

aluminium tube are shown in Figures 5(a}d) and those for the fabric tube are given
in Figures 6(a}d). The ¸

p
was measured on the centreline of the tube in all cases.

Predicted curves are shown, both with and without an external radiation load,
i.e. with and without coupling between internal and external sound "elds. The
predicted axial dependence of ¸

p
* with coupling*shown in Figures 5(a}d) agrees

generally very well with the measured data. At 200 Hz, measurements for
x(0)352 m su!ered from a poor signal/noise ratio and are not shown, and the
sharp dip in ¸

p
at 500 Hz for 0)3 m)x)0)35 m is thought to be caused by an

extraneous e!ect such as sound radiation from the loudspeaker casing. Otherwise,
predicted and measured sound pressure patterns agree very closely, the maximum
di!erences being only about 1}2 dB at 1 kHz. These small discrepancies may be
attributed to imperfect prediction of the wall impedance at this relatively high
frequency. Some evidence of instability in the iterative solution method was found
for this tube in the mid-frequency range*particularly at 500 Hz*but this was
minimized by avoiding the use of an excessive number of cells (N"20 proved to be
about optimum in the present case). The instability is partly a result of the relative
transparency of the perforated aluminium tube to sound, and in more practical



Figure 5. Axial variation in relative sound pressure level for the aluminium tube terminated by
a rigid plate; m, measured data; ***, predicted (with radiation load); } } } , predicted (without
radiation load). (a) 200 Hz, (b) 500 Hz, (c) 750 Hz, (d) 1 kHz.
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cases where the wall impedance is higher*such as the fabric tube*instability was
not a problem. It may be seen from Figures 5(a}d) that at the lower frequencies, the
duct walls are relatively transparent to sound and a very large axial attenuation
rate (roughly 90 dB/m at 500 Hz*for example*in the almost linear decay of the
sound level over the "rst 0)5 m in front of the sound source) is apparent. At the
higher frequencies however, the wall reactance (approximately Ju) is high enough
to inhibit sound radiation and cause a lower attenuation rate, together with a more
prominent standing-wave pattern. This is particularly evident at 1 kHz. Very
strong coupling between the internal and external sound "elds is evident at the
lower frequencies, since there is a dramatic di!erence between the predicted curves
with and without a radiation load, particularly toward the rigid-tube termination.
At 1 kHz, these di!erences lie more in the changes between the maximum and
minimum ¸

p
values, and in the positions of the minima.

The axial sound pressure level distribution in the aluminium tube has been
computed from "rst principles, without the need for measurement of the wall
impedance. One may therefore take the close correspondence between experiment
and theory and the very pronounced e!ect of coupling between the internal and
external sound "elds as con"rmation of the accuracy of the theoretical formulation
and of the numerical data. Plots of the relative phase of the sound pressure are not



Figure 6. Axial variation in relative sound pressure level for the fabric tube terminated by a rigid
plate; m, measured data; ***, predicted (with radiation load); } } }, predicted (without radiation
load). (a) 250 Hz, (b) 500 Hz, (c) 750 Hz, (d) 1 kHz.

TABLE 1

00Best ,t11 wall impedance data for the fabric tube

f (Hz) 1
w

250 3#i2)5
500 6#i0)5
750 7#i1

1000 9)5#i1
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shown here since they contribute nothing additional to the discussion, but
prediction*with coupling*and measurement generally agree well.

In the case of the fabric tube, &&best-"t'' wall-impedance data were obtained as
outlined previously. The inferred values are given in Table 1. It can be seen that the
real part of the impedance progressively increases from 3 to 9)5 as the frequency
rises, while the imaginary part varies between 2)5 and 0)5. These impedance data
were used in computing all the following predicted data on the fabric tube.

The predicted axial sound pressure level variation*with coupling*for the
fabric tube shown in Figures 6(a}d) agrees well with the measured data, though the
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latter show more scatter than those taken with the perforated aluminium tube,
perhaps because of inhomogeneities in the wall impedance. As a result of the higher
wall impedance in the case of this tube, there is less di!erence between the coupled
and uncoupled predicted curves than there is with the perforated tube, though this
di!erence can still be signi"cant, particularly at 250 Hz. In the initially linear
portion of the sound level decay, the axial attenuation rate is still large at the lower
frequencies, being approximately 62 dB/m at 250 Hz and falling to about 35 dB/m
at 1 kHz.

3.2. PREDICTED SOUND PRESSURE LEVEL DISTRIBUTION AND NET SOUND POWER LOSS
FOR THE FABRIC TUBE WITH A NON-REFLECTING TERMINATION

It is of interest to predict the axial sound pressure level variation in the fabric
tube with the rigid, non-re#ecting, tube termination. Plots of these patterns are
shown in Figures 7(a}d). As expected, acoustic re#ection from the termination is
fairly small, as indicated by the largely linear variation in ¸

p
and minimal

undulations in the curves. Perceptible*but small*undulations are evident at
1 kHz. In all curves, the axial impedance change at the termination brings about
a change in slope of the ¸

p
pattern at x"0.

Perhaps of greater interest is the computed net sound power loss, and these data
are shown in Table 2, together with values of =

i
, =

r
,=

t
,=

rad
and =

diss
.

Figure 7. Axial variation in computed relative sound pressure level for the fabric tube terminated
by a semi-in"nite rigid walled tube. (a) 250 Hz, (b) 500 Hz, (c) 750 Hz, (d) 1 kHz.



TABLE 2

Sound power components and net sound power loss for the fabric tube with
a non-re-ecting termination

f =
i

=
r

=
t

=
rad

=
diss

D=
(Hz) (Watt) (Watt) (Watt) (Watt) (Watt) (dB)

250 4)12]10~2 1)09]10~6 2)88]10~6 7)68]10~4 4)04]10~2 17)3
500 1)77]10~2 2)95]10~7 2)88]10~6 3)93]10~4 1)73]10~2 16)5
750 4)48]10~3 5)94]10~8 2)88]10~6 1)45]10~4 4)33]10~3 14)8

1000 8)45]10~4 5)34]10~9 2)88]10~6 2)79]10~5 8)14]10~4 14)4
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A surprisingly large sound power loss is apparent, and this is greater at the lower
frequencies. Clearly, the fabric tube not only splits the incident sound power #ow
into re#ected, transmitted and radiated components, but also brings about
a substantial net dissipation. The "gures for=

diss
are, in all cases, not far short of

the =
i
values, so by far the greater proportion of the incident sound power is

actually dissipated in the walls. An internal &&transmission loss'' (not including the
radiated or dissipated sound power) could be de"ned as 10 log(=

i
/=

t
), and one

may see from the above "gures that this falls from 41)6 dB at 250 Hz to 24)7 dB
at 1 kHz.

4. CONCLUSIONS

The theoretical model for the internal and external sound "elds in a tube with
rigid porous walls, and in particular the coupling between the two, yields accurate
results for the internal sound "eld in a perforated tube with easily predictable wall
impedance. As previously mentioned, the iterative solution method can exhibit
a degree of instability when the wall impedance is low, but the e!ects of this can be
reduced by the avoidance of an excessive number of cells. In the case of practical
types of tube with higher wall impedance, such as the fabric tube investigated here,
instability is unlikely to be signi"cant. Predicted and measured internal sound "elds
in this fabric tube were in good agreement, albeit with the use of an empirically
determined wall impedance. The e!ects of coupling between the internal and
external sound "elds in the fabric tube were signi"cant*particularly at low
frequencies*but less marked than in the case of the perforated tube. The net sound
power loss in the fabric tube was quite substantial, and was at its highest at low
frequencies. This*together with the other sound power data given in Table
2*suggests that with careful design, permeable-walled tubes could constitute
useful noise control elements. The external radiation impedance could, in principle,
be tailored to optimize the internal wall impedance such that the axial attenuation
was at a maximum while=

rad
was still kept to an acceptable level.

The piecewise uniform duct wall impedance model, together with the assumption
of purely fundamental mode propagation in the duct, appeared to be justi"ed
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within the frequency range of the present investigation. It is however reasonable to
assume that, at higher frequencies, higher order mode propagation might be of
some signi"cance. The external radiation model [6] employed here was evidently
adequate for the present purpose, and it is worth noting that a much simpler point
source model for the mutual radiation impedance proved inaccurate.

The present model should provide a satisfactory basis for the acoustic design of
practical duct systems incorporating permeable tubes. It could be re"ned to
account for complications of geometry and to include the e!ects of mean gas #ow,
should this prove to be necessary. Future investigation of the utility of permeable
tubes as noise-control devices would be of considerable interest and clari"cation of
the role of structural vibration of the tube walls would be useful.
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